State of Alaska
Governor’s Climate Change Sub-Cabinet
Stakeholder Process

Oil and Gas Technical Working Group

Alaska Forum on the Environment
February 2 – 6, 2009
Diane Shellenbaum, AK Dept. of Natural Resources
Overview

- Oil and Gas Technical Working Group Participants
- Role
- Process
- Options/Recommendations
Oil and Gas Technical Work Group

- Collaboration of Oil and Gas experts from Government, Public, and Industry
- Review emissions inventory and Identify GHG Reduction Options
- Provide input to Mitigation Advisory Group

- Res/Com Fuel Use: 9%
- Industrial Process: 35%
- Agric. Fuel Use: 41%
- O+G GHG Emissions: ~15 Mmt CO₂ e
- Seafood Production: 11%
- Other: 8%
- Military: 5%

Alaska Title V GHG Emissions

- Oil & Gas: 73%
- Mining: 1%
- Municipal: 1%
- ~21 Mmt CO₂ e

~52 Mmt CO₂ Equivalent
(~0.7% US Emissions)
North Slope O+G emissions predominantly due to combustion of natural gas

Inventory Analysis Conclusions

- 15 Mmt CO$_2$e for O&G of 52 Mmt CO$_2$e Alaska Gross GHG emissions

- 12 Mmt CO$_2$e from NS Operations, Fuel gas consumption largest component

- Option recommendations address inventory conclusions

- Many lessons learned from North Slope can be applied to Cook Inlet
TWG working Options February 2, 2009

<table>
<thead>
<tr>
<th>Conservation</th>
<th>1. Overall conservations activities, ie reduce liquid fuel consumption, other best practices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Reduce Fugitive Methane Emissions</td>
</tr>
<tr>
<td></td>
<td>3. Electrification of Oil and Gas Operations, with Centralized Power Production and Distribution</td>
</tr>
<tr>
<td></td>
<td>4. Improved Efficiency Upgrades for Oil and Gas Fuel burning Equipment</td>
</tr>
<tr>
<td></td>
<td>5. Use of Renewable Energy Sources in Oil and Gas Operations</td>
</tr>
<tr>
<td></td>
<td>6. CCS from High CO2 Fuel Gas at Prudhoe Bay</td>
</tr>
<tr>
<td></td>
<td>7. CCS from Combustion Sources in and near Existing Oil and Gas Fields - Focus North slope</td>
</tr>
<tr>
<td></td>
<td>8. CCS away from Known Geologic Traps - (Interior Alaska)</td>
</tr>
</tbody>
</table>
Recommendations 1-2:
Conservation / Waste Reduction

1) Overall conservations activities, ie reduce liquid fuel consumption, other best practices

2) Reduce Fugitive Methane Emissions
Thermal Energy Efficiency at Oil and Gas Operations

IEA Greenhouse Gas R&D Programme - Storing CO2 Underground
Options 3-5: Thermal Energy Efficiency at Oil and Gas Operations

3) Electrification of North Slope facilities with centralized power production and distribution

4) Improved efficiency upgrades for fuel burning equipment

5) Use of renewable energy sources for power generation
Figure TS.7. Methods for storing CO₂ in deep underground geological formations. Two methods may be combined with the recovery of hydrocarbons: EOR (2) and ECBM (4). See text for explanation of these methods (Courtesy CO₂CRC).
Recommendations 6-8: Carbon Capture and Geologic Sequestration*

6) CCS from fuel gas at Prudhoe, before combustion. Sequester in nearby reservoirs where enhanced oil recovery can be used.

7) CCS from Prudhoe generators exhaust gas, after combustion. Sequester in nearby reservoirs where enhanced oil recovery can be used.

8) CCS from Interior Power Plants. Ship CO₂ to known reservoir or explore for nearby sequestration site. (This option is much more difficult and expensive to enact without a proven reservoir.)

* Carbon capture is currently very expensive technology, untested in Alaska, and power (and water) intensive.
Conclusions

• Short Term: Best practices and Conservation can be implemented almost immediately. Analyze and minimize fugitive emissions

• North Slope has highest emissions for O&G sector, increased energy efficiency there could result in significant emissions reductions. Will require massive investments and changes to regulatory environment.

• North Slope Carbon Capture and Geologic Sequestration could be used to further significantly reduce emissions. Technology is in early stages, will require major facilities upgrades, and additional fuel will be burned.

• Many options also applicable to Cook Inlet
Research Recommendations

- **Technical**
 - CO$_2$ capture technologies for North Slope and Cook Inlet
 - Study where renewable energy sources co-exist with Oil and Gas operations
 - Feasibility of using hydrogen produced from methane as a fuel source
 - Feasibility of producing power on North Slope, capturing and sequestering the emissions there, and using long term transmission lines to deliver power to markets
Research Recommendations (cont.)

- Economic
 - Short and long term value of carbon
 - Short and long term value of natural gas
 - Impact of various incentives to encourage major capital improvement investments

- If you have additional ideas on priority research needs for this area, attend the:
 Climate Change Research Coordination Workshop
 Thursday, February 5, 9:15-4:45 pm [Dena’ina Center]
Thank you!
Your Input is Welcome!

You may follow the progress of this TWG and the Advisory Group, or provide comments by visiting:

http://climatechange.alaska.gov/

Your input may also be submitted on Comment Sheets available here at the AFE