Oil and Gas Technical Work Group
Governor’s Sub-Cabinet for Climate Change

Status report to the MAG -
Options to reduce GHG emissions from O&G Operations
April 2, 2009 Anchorage

Overview

- Enduring Themes
- Progress on Quantification
- Timeline
- Option Review / Quantification Status
- Learnings / Summary
Enduring Themes in Options to Reduce GHG Emissions in Alaska

- Support economic vitality of Alaska
- Encourage capital investment
- Ensure regulatory simplicity

Oil & Gas TWG Update on Option Development and Review—Quantification Progress to date

- TWG has been meeting since last MAG. Most options in second and third iterations.
- Excellent support from ICF and industry experts. Meetings very productive.
- Preliminary results of quantification still under analysis, gaining a better understanding of significant assumptions and economic drivers. Results vary widely based on the assumptions.
- Parameters for prioritization not yet finalized, however ranking should be achievable as the quantification gets more refined.
Timeline

- March 26 - April 23: High level quantification estimates completed, final TWG review
- March 26 - May 9: Reformat and complete documentation of options, determine ranking methodology
- April 23 - May 9: Final quantification review
- April 23 - May 9: Develop recommendations on incentives to improve option viability
- May 14: Proposed interim presentation to MAG
- May 15 - June 11: Rework and rank options
- June 18 - Final MAG presentation

- ~ 52 Mmt CO₂ Equivalent
- (~0.7% US Emissions)

Alaska Title V GHG Emissions

- ~ 21 Mmt CO₂ e
TWG working Options April 2, 2009

<table>
<thead>
<tr>
<th></th>
<th>Overall conservation activities, i.e., reduce liquid fuel consumption, other best practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Reduce Fugitive Methane Emissions</td>
</tr>
<tr>
<td>3</td>
<td>Electrification of Oil and Gas Operations, with Centralized Power Production and Distribution</td>
</tr>
<tr>
<td>4</td>
<td>Improved Efficiency Upgrades for Oil and Gas Fuel burning Equipment</td>
</tr>
<tr>
<td>5</td>
<td>Use of Renewable Energy Sources in Oil and Gas Operations</td>
</tr>
<tr>
<td>6</td>
<td>CCS from High CO2 Fuel Gas at Prudhoe Bay</td>
</tr>
<tr>
<td>7</td>
<td>CCS from Combustion Sources in and near Existing Oil and Gas Fields - Focus North Slope</td>
</tr>
<tr>
<td>8</td>
<td>CCS away from Known Geologic Traps - (Interior Alaska)</td>
</tr>
</tbody>
</table>

O&G TWG Conceptual GHG Reduction Timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Overall Conservation</th>
<th>Fugitive Methane</th>
<th>Electrification</th>
<th>Efficiency Upgrades</th>
<th>Renewable Energy</th>
<th>Fuel Gas Carbon Capture</th>
<th>Combustion Carbon Capture</th>
</tr>
</thead>
</table>
Conservation / Waste Reduction

1) Conservation- Minimize, optimize, and reduce energy consumption, liquid fuels, gas, and electricity use.

2) Reduce Fugitive Methane Emissions--Assess potential reductions of fugitive methane;

Quantification Status—approach, complexities, challenges, issues

- No attempts to quantify conservation, keep as qualitative
- Fugitive methane quantification costs/reductions ongoing
 - Major uncertainties exist in fugitive methane estimates, but appear much less than original CCS/DEC reports. Numbers small when compared to other options.

Thermal Energy Efficiency at Oil and Gas Operations
Thermal Energy Efficiency

3) Electrification of North Slope facilities with centralized power production and distribution

4) Improved efficiency upgrades for fuel burning equipment

5) Use of renewable energy sources for power generation

Electrification of North Slope facilities with centralized power production and distribution

Quantification Issues

• Requires major upgrade and expansion of the entire grid infrastructure on the North Slope
• Will have an overall major efficiency improvement meaning less gas burned and thus significantly reduced GHG emissions.
• Some equipment is already currently at a reasonable thermal efficiency
• Quantification Status Discussion
 • Approach
 • Complexity
 • Challenges
Efficiency upgrades for fuel burning equipment, especially gas turbines

Quantification Issues
- Efficiency improvements mean less gas burned, resulting in reduced GHG emissions.
- Improvements can be made through upgrading existing industrial gas turbines to modern aero-derivatives, or by addition of waste heat to existing turbines (only former is being quantified.)
- Some equipment is already at its optimal or near optimal (not all equipment is included)
- Quantification Status Discussion
 - Approach
 - Complexity
 - Challenges

Use of renewable energy sources for power generation

Quantification Issues
- The focus is on the North Slope, but it may have application to oil and gas operations elsewhere, including onshore Cook Inlet facilities.
- Wind power is a potential resource, but is an unproven industrial technology for North Slope operations.
- Could be effective in augmenting power generation for electricity by reducing gas usage and GHG emissions as part of a more comprehensive hybrid option combining aspects of 1-4 and 6.
- Quantification Status Discussion
 - Approach
 - Complexity
 - Challenges
6) Remove CO2 from fuel gas at Prudhoe Bay. Use for EOR.

7) Remove CO2 from exhaust gas at Prudhoe Bay. Use for EOR.

8) Remove CO2 from exhaust gas at interior power plants or refineries. Ship CO2 to known reservoir or explore for nearby sequestration site.

• Note: This is mostly non oil and gas facilities
Aspects of Carbon Capture and Geologic Sequestration

1) Find appropriate storage reservoir
2) Drill Injection Wells
3) Capture CO₂
4) Compression and dehydration
5) Pipelines for Transport
6) Compression and Injection
7) Long Term Monitoring

CCS in oil/gas fields – may already have some of the needed facilities
Remove CO₂ from fuel gas at Prudhoe Bay. Use for EOR

Quantification Issues
- Option supports early enhanced oil opportunities and provides reduced CO₂ emissions.
- Could be stand alone.
- Technology will be needed/required for eventual gas sales (acts as big pilot for major gas sales).

Lessons learned
- Biggest drivers are CO₂ capture costs and value from additional oil from EOR.
- Choice of field for EOR critical (infrastructure, reserve potential, etc).
- Parasitic energy losses for capture likely compensated by EOR gains.

Remove CO₂ from exhaust gas at Prudhoe Bay. Use for EOR

Quantification Issues
- Supports early enhanced oil opportunities and provides reduced CO₂ emissions.
- **Considerably** more efficient and cost effective to first maximize energy efficiency options. (Realistically only practical when combined with centralized energy efficiency.)

Lessons learned
1. Gas line impacts **supply/demand** aspect of CO₂ for EOR.
2. Biggest drivers are CO₂ capture costs and value from EOR.
Remove CO₂ from exhaust gas away from O&G fields. Ship CO₂ to known reservoir or explore for nearby sequestration site.

Quantification Issues
• Reduces CO₂ emissions.
• Primary focus on coal power generation, some refineries
• MUCH more efficient to first maximize energy efficiency.
• Could be required to meet ambitious long-term GHG reduction goals being discussed in Federal Government.

Lessons Learned
1. Capital costs huge, can be twice cost of plant w/out CCS
2. Unknowns: Exploration costs, pipeline length/costs, Regulatory requirements for long term storage.
3. DOE / NETL in large scale testing mode
4. Recommend we defer quantification step until more information on costs and regulations are available.

Summary - Implementation Challenges/Issues
• Economics
• Many options are Mega Projects - Significant overlapping resource requirements among options, and with construction related to major gas sales.
• So - Even with no economic constraints, we can’t do everything.
• Cross Unit issues will delay full implementation– affects power generation, CO₂ transport, regulated power utility issues, commercial issues between different owners.
• Most options are not stand alone, but may be most effectively implemented as some kind of a hybrid scheme
• ie improving energy efficiency of individual pieces of equipment while centralizing power, thereby adding carbon capture technology to the fewest pieces of machinery, etc.
Summary Options – Stand alone*

<table>
<thead>
<tr>
<th>#</th>
<th>Option Description</th>
<th>Estimated target emissions (in MMT CO₂e)</th>
<th>Remainder after max reductions (2-5-09)</th>
<th>Current Working Estimate (4-2-09)</th>
<th>Comments/ Assumptions</th>
<th>Final Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conservation (NS)</td>
<td>12.0</td>
<td>~11.4</td>
<td>?</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>2</td>
<td>Best Conservation Practices</td>
<td>12.0</td>
<td>~11.5</td>
<td>?</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>3</td>
<td>Reduce Fugitive Methane</td>
<td>12.0</td>
<td>~11.9</td>
<td>~11.9</td>
<td>No actual measurements available</td>
<td>TBD</td>
</tr>
<tr>
<td>4</td>
<td>Electrification, Centralized Power</td>
<td>12.0</td>
<td>~4.0</td>
<td>~6</td>
<td>27-52% efficiency improvement</td>
<td>TBD</td>
</tr>
<tr>
<td>5</td>
<td>Improved Efficiency Equipment</td>
<td>12.0</td>
<td>~6.0</td>
<td>~9</td>
<td>27-37% efficiency improvement</td>
<td>TBD</td>
</tr>
<tr>
<td>6</td>
<td>Renewable Energy</td>
<td>12.0</td>
<td>~11.0</td>
<td>?</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>7</td>
<td>Carbon Capture and Storage (NS)</td>
<td>12.0</td>
<td>~5-1.0</td>
<td>?</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>8</td>
<td>CCS from High CO₂ fuel at Prudhoe</td>
<td>12.0</td>
<td>~11.0</td>
<td>~11</td>
<td></td>
<td>TBD</td>
</tr>
<tr>
<td>9</td>
<td>CCS from Combustion Sources</td>
<td>12.0</td>
<td>~5-1.0</td>
<td>?</td>
<td>Very expensive, ability to implement on NS uncertain</td>
<td>TBD</td>
</tr>
<tr>
<td>10</td>
<td>CCS away from O&G fields</td>
<td>3.0</td>
<td>~2.5</td>
<td>~2.5</td>
<td></td>
<td>TBD</td>
</tr>
</tbody>
</table>

*All numbers are rounded approximations only
Total NS emissions ~ 12 MMT, Total Interior emissions ~ 3 MMT

Incentives for long term viability for GHG reductions – Initial discussions

- Encourage capital investment
- Streamline/simplify (in some cases identify) regulatory environment
- Encourage maximization of ultimate hydrocarbon recovery
- Prepare for implications of potential Federal Carbon regulations to Alaska

Note: All GHG emission estimates based on Title V stationary source emissions based on fuel burned from 2002. ie no accounting for new developments or gas pipeline
Enduring Themes in Options to Reduce GHG Emissions in Alaska

- Support economic vitality of Alaska
- Encourage capital investment
- Ensure regulatory simplicity (consistency!)

Timeline

- March 26 - April 23: High level quantification estimates completed, final TWG review
- March 26 - May 9: Reformat and complete documentation of options, determine ranking methodology
- April 23 - May 9: Final quantification review
- April 23 - May 9: Develop recommendations on incentives to improve option viability
- May 14: Proposed interim presentation to MAG
- May 15 - June 11: Rework and rank options
- June 18 - Final MAG presentation
Questions