Alaska Climate Change Mitigation Advisory Group

FAW Technical Working Group Meeting #11
March 18, 2009
Office of the Governor
The Center for Climate Strategies
Agenda

• Call to order and roll call
• Review and Approval of Prior Call Summary
• Review Next Steps for TWG
• Review of Quantification Process and Draft Results
• Final Review of Alaska Draft Emissions Inventory & Forecast
• Agenda, Time and Date for Next Meeting
• Public Input and Announcements
Stepwise Planning Process

1. Develop inventory and forecast of emissions
2. Identify a full range of possible actions
3. Identify initial priorities for analysis
4. Develop straw proposals
5. Quantify GHG reductions and costs/savings
6. Evaluate externalities, feasibility issues
7. Develop alternatives to address barriers
8. Aggregate results
9. Iterate to final agreements
10. Finalize and report recommendations
Next Steps for TWG

• Continue quantification process
 – CCS to work with TWG on data sources, methods
 – Draft FAW-1 and FAW-2 quantification complete
 – Revisions to FAW-3 complete

• Finalize updates to AK GHG I&F
 – Soil Carbon assumption in permafrost areas – Referred to RNWG
 – Boreal and Coastal forest carbon flux - Referred to RNWG
 – Revisions made to waste management I&F
Research Needs Work Group

• Update from RNWG member
Quantification Process

• See Policy Options Document
 – Posted on the FAW TWG webpage
Quantification Process – TWG
Input Needed

• Input needed from each TWG volunteer sub-group for the following sections of the Policy Options Document:
 – **Implementation Mechanisms**
 – Related Policies / Programs in Place
 – Key Uncertainties
 – Additional Benefits and Costs
 – Feasibility Issues
Quantification Process – FAW-1

• Draft FAW-1 Quantification Available
 – See FAW Policy Options Document
Quantification Process – FAW-2

• Draft FAW-2 Quantification Available
 – See FAW Policy Options Document
Quantification Process – FAW-3

• Draft FAW-3 Quantification Available
 – See FAW Policy Options Document
 – Preliminary review provided by TWG
 – Revisions made based on changes to the baseline solid waste management, as suggested by TWG
GHG Inventory & Forecast

• Updated Appendices:
 – Agriculture
 • Updated Appendix to reflect extension of forecast to 2025
 – Waste Management
 • Updated emission Inventory and Forecast to reflect changes to waste disposal data provided by TWG.
 • Updated Appendix to reflect extension of forecast to 2025
 – Forestry
 • Inserted brief discussion of uncertainties regarding permafrost and carbon flux
 • Updated Appendix to reflect extension of forecast to 2025
Agriculture

![Graph showing changes in agricultural emissions from 1990 to 2025.]

March 18, 2009 www.akclimatechange.us 12
Agriculture

- **Data Sources**
 - Crop Production: USDA/NASS
 - Livestock: USDA/NASS
 - Fertilizer: Fertilizer Institute

- **Methods**
 - Crops: SGIT emission factors and crop production data
 - Livestock: SGIT emission factors and livestock populations
 - Fertilizer: SGIT fertilizer consumption
 - Projections for other categories based on historical growth trends
Agriculture

• Key Assumptions
 – Future growth for agricultural soils will follow historical trends
 – Livestock population growth will follow five-year growth rate from 1997 – 2025.

• Key Uncertainties
 – Manure management emission factors derived from limited data sets
 – Livestock numbers based on point estimates for each year to represent populations that fluctuate throughout the year
 – Projection assumptions
Waste Management – Initial Draft Inventory and Forecast

[Diagram showing data on waste management over time, with categories such as Uncontrolled LFs, LFGTE LFs, Industrial LFs, Municipal WW, and Industrial WW.]

March 18, 2009 www.akclimatechange.us
Waste Management – Updated Draft Inventory and Forecast

March 18, 2009 www.akclimatechange.us
Waste Management

• Data sources
 – EPA Landfill Methane Outreach Program Database
 – Additional landfill data provided by DEC
 – DEC data on waste combustion
 – State population and SGIT default data for municipal WW treatment
 – FAW TWG data on landfill disposal

• Methods
 – SGIT with data sources above
 – CCS post-processing to account for controls and growth
Waste Management

• Key Assumptions
 – Growth Rates
 • Controlled Landfills – assumes continuation of current emplacement rates through 2025
 • Waste Combustion and Municipal WW – AK population projections

• Key Uncertainties
 – Methods do not account for landfill controls that will be required during period of analysis
 – Many small landfills may be frozen for as much as half the year.
 – Data was not available to estimate industrial wastewater, treatment of fish processing waste, and ballast water.
Forestry

<table>
<thead>
<tr>
<th>Source</th>
<th>CO₂e Flux (MMtCO₂e)<sup>a</sup></th>
<th>1990</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-Level Forest Flux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Flux</td>
<td></td>
<td>4.6</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Non-CO₂ Gases from Fire</td>
<td></td>
<td>4.5</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
<td>4.9</td>
</tr>
<tr>
<td>CH₄ Flux<sup>b</sup></td>
<td></td>
<td>16</td>
<td>21</td>
<td>24</td>
<td>26</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Total State-Level</td>
<td></td>
<td>25</td>
<td>38</td>
<td>41</td>
<td>43</td>
<td>48</td>
<td>53</td>
</tr>
<tr>
<td>Flux for Managed Forests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂ Flux</td>
<td></td>
<td>-0.3</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>Non-CO₂ Gases from Fire</td>
<td></td>
<td>0.0</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>CH₄ Flux</td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Total – Managed Forests</td>
<td></td>
<td>-0.3</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
<td>-1.4</td>
</tr>
</tbody>
</table>

Positive values represent net CO₂e emissions. Non-CO₂ gases are methane and nitrous oxide.

^a Values reported are ten year averages of annual data surrounding the year reported (e.g., 1990 average is the average of data for 1985-1994). For 2000, data only available through 2002. After 2000, flux estimates are assumed to remain constant.

^b UAF estimate for the 1980-1996 period used for 1990. UAF growth rate of 0.5 MMtCO₂e/yr used for forecast years. See Section on CH₄ emissions from Alaskan ecosystems.

^c Managed forests are the coastal maritime forests of the state. CH₄ flux estimates were not available for managed forests.
Forestry

• Data Sources
 – University of Alaska carbon flux estimates, wildfire acreages
 – WRAP 2002 Wildfire Inventory

• Methods
 – Forestry: UA study used to develop estimates and projections of anthropogenic emissions and sinks
 – Carbon flux data for the 2001-2005 time-period assumed to remain constant through 2025
Forestry

• Key Assumptions (managed forests)
 – 2001-2005 carbon stock change representative of current conditions
 – No significant change in carbon flux from 2006-2025

• Key Uncertainties (managed forests)
 – Effects of future development on forested acreage
 – Effects of near-term climate change on forest sequestration levels

• Key Uncertainties (unmanaged forests) –
 – Many, including impacts of early thaw (see Forestry appendix)
Next TWG Meeting

- Agenda:
 - Review input from CCMAG
 - Final input and review of FAW POD
 - Review final revisions to Alaska emissions inventory and projection (if necessary)

Time and Date: April 15, 2009.
10:00 AM – 11:30 AM Alaskan Time

CCMAG Meeting: April 2, 2009
Public Input, Announcements